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J. Phyx: Condens. Matter 4 (1992) 74551-1468. Printed in the UK 

Optimized norm-conserving pseudopotentials 

G Kresset, J Hafnert and R J Needsf 
t lnstilut ffir Theorrtische Physik, Technische Universit%t Wien, 
Wiedner Hauptstrasse 8-10, A-1040 Wen, Austria 
t Thcoly of Condensed Matter Group, Cavendiah Laboratoty, Universiiy of Camblidge, 
Madinglcy Road, Cambridge CB3 OHE, UK 

AbslracL In this paper we investigate the construction of nomanserving 'soft-core' 
pseudopotentials with improved convergence properties of lhe plane-wave and penur- 
bation expansions. The key factor is found to be the kinelic energy of the valence 
pseudo-orbitals. l h e  total kinetic energy controls the convergence of lhe perturbation 
expansion 01 thc total energy, the kinelic energy contained in the Fourier mmponents 
beyond a cerlain cut-off limits the convergence or the plane-wave expansion. The si- 
multaneous optimization of both expansions allows us lo use the Same pseudopotential 
in a rapidly convergent lotal-energy calculation for the nyslalline phases, and in the 
calculation of interatomic forces to be used in atomistic simulations of the disordered 
phases. 

1. Introduction 

Elcctronic structure and total-encrgy calculations performed within the framework 
of the local-density approximation (LDA) [l] have demonstrated their ability to give 
rcliable predictions of the physical properties of solids. 

'Mathematically, calculations of the electronic strucwe proceed by repeated diag- 
onalization of the LDA-HamatOnian on an arbitrary basis. Various basis Sets such as 
plane waves, linearized augmented plane waves (LAPW), linearized muffin-tin orbitals 
(LMTO), Gaussians, and mixed basis sets have commonly heen used. Both mathemati- 
cally and numerically the plane-wave-basis formalism is very convenient to implement 
for both crystals and disordered materials. However, even with the development of 
diagonalization methods that can handle a basis of the order 104 plane waves [2-5], 
a plane wave expansion can be expected to converge only if the effect that the chem- 
ically inert core states exert on the valence states is replaced by an effective weak 
pscudopotential. These ideas date back to the early work of Fermi [6] and Hell- 
miinn 171 and have found widcsprcad application sincc the seminal work of Phillips 
and Klcinman [SI. Thcrc is yct another reason for thc interest in pseudopotentials. 
To date, the expansion in powers of the pscudopotential is the most natural way to 
brcak the total-encrgy into a sum of volume, pair, and many-atom contributions and 
to derive a set of volume, pair, and many-body forces for use in atomistic simulations 
of solids and liquids 19-121. 

The only constraint on a pseudopotential is that it reproduces the valence electron 
spectrum, but has no bound states corresponding to the core electrons. An infinite 
number of pseudopotentials can he generated and much work has been carried out 
to determine the auxiliary conditions that give a pseudopotential that is accurate, 
transferable (in the sense that it adequately reproduces the all-electron behaviour 
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outside the core region in different chemical environments), and computationally 
etficient. 

In the sixties and seventies [9, lo], pseudopotentials were uscd mostly in perturba- 
tion calculations of the cohesive, structural, and dynamic properties. In this context, 
thc Cohen-Heine criterion [13], which calls for a minimization of the kinetic energy 
of the pseudo-valence. states Iep) via : 

leads to a very effective cancellation of the strong attractive crystal potential V 
hy the repulsive part of the pseudopotential W and to an optimum convergence 
of the perturbation series. The Cohen-Heine criterion is implemented most effec- 
tively within the framework of pseudopotentials constructed via an orthogonalized 
plane-wave (OPW) expansion of the valence states [14]. OPW pseudopotentials are 
constructed (and optimized) for ions in an electron gas of the density corresponding 
to thc element, alloy or compound under consideration [15]. The fact that no specific 
rcfercnce configuration has to be assumed for the generation of the pseudopotential 
ensures tha t  there is no problem of 'transferability'. The optimization improves the 
convcrgeence of the perturbation series, but not necessarily the convergence of the 
plane-wave expansion. In Pact, it turns out that due to the 'hard core' character of 
OPW pseudopotentials, plane-wave convergence is rather slow so that these potentials 
are not very well suited for non-perturbative total energy calculations. 

This has led to the construction of 'soft-core' pseudopotentials of various types 
[ 16-20]. Nodeless pseudo-orbitals are constructed for atomic reference configurations 
in such a way that the valence all-electron and pseudopotential eigenvalues are equal 
and that the inversion of the radial Schrodinger equation produces a smooth, 'soft- 
core' pseudopotential (where smoothness is considered to be synonymous with a rapid 
convergence of the calculated total-energy with respect to an increase in the size of 
thc plane-wave basis set). The pseudopotential should reproduce the results of all- 
electron calculations in different environments as closely as possible, i.e. it should 
he transferable. An initial test of the transferability is provided by the logarithmic 
dcrivatives of the radial pseudo- and all-electron wavefunctions upp and up" at the 
radius R,, beyond which wpp and wp" are identical. Evidently this requires the 
equality of the logarithmic derivatives, i.e. : 

By construction, equation (2) holds for the energy-eigenvalue E,. For a transferable 
pscudopotential, equation (2) should hold for a range of energies around E,. An 
identity similar to the Fricdel sum rule relates the enerw derivative of the logarithmic 
dcrivatives at r = R,, to the angular-momentum component of the charge within that 
sphcrc [21,22] 

Equation (3) shows that if the transformation from the all-electron orbitals to the 
pseudopotentials conserves the norm of the wavefunetion, then the norm-conserving 
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pscudopotential can also be expected to be transferable. Evidently extensions of this 
concept involve the adjustment of the reference energy (even at the expense of using 
unbound wavefunctions [U]) or equating higher-order energy derivatives [24] of (2). 

However, there is one drawback in the original norm-conserving pscudopotentials 
[U]: the pseudopotential matrix element is large for momentum transfers around 
q = 212, (figure 1). Thcrcfore, although the plane-wave convergence is good, the 
convergence of the perturbation series is slow and effective interatomic forces cal- 
culated in a low-order perturbation approximation are unrealistic. Hence it is not 
possible to switch between a perturbation calculation and iterative total-energy calcu- 
lations, and the decomposition of the total-energy into volume, pair, and many-body 
forces cannot be used to analyse the results in term of interatomic interactions. 

L 0. I _ _ _ _ _ -  
Flgurc 1. Screened pseudopotential matrix ele- 
ment ( k  + qlwlk) for AI, calculated using the 
optimized orthogonalized plane-wave paeudopoten- 
tial (dashed line) and using the nom-consewing 
Bachelet-HamannSchluler (BHS) pseudopotential 
(lull line). The upper pan confains the on-Fermi- 
sphere (Ikl = Ik + qI = kp) matrix element for 
p < 2kp and the back-scattering matrix element 

0 2 4 6 8 10 (-q11(q+ k)) lor q > 2 k ~ ,  the lower part shows 
the matrix element for Ionvard scatteling. q / k r  

In  this papcr wc report o n  an attcmpt to optimize simultaneously the planc- 
wave convergence and the convergence of a pcrturbation cxpansion for the total- 
cncrgy. We show that by exploiting the improved schemcs for constructing norm- 
conscrving pseudopotentials it is possible to obtain a low cut-off energy for the plane 
wave expansion and realistic atomic forces that can serve for atomistic simulations of 
disordered phases. 

2. Optimizing norm-conserving pseudopotentials 

Normconserving pseudopotentials are constructed in such a way that the logarithmic 
derivatives of the wavefunction and the pseudo-wavefunction and the energy derivative 
of the logarithmic derivatives agree at a certain cut-off radius Rei. The second 
condition guarantees the conservation of the norm (see equations (2) and (3)). This 
laves considerable freedom in the construction of the pseudopotential. Many of the 
carly norm-conserving pseudopotentials [26,27] are of the hard-core type (i.e. having 
a rcpulsive v2 divergence at the origin). This leads to a q-' decay in the reciprocal 
space, and hence to very poor convergence property. The Hamann-Schliiter-Chiang 
(IISC) method [17, IS] begins with a selfconsistent all-electron calculation for an 
atomic reference configuration. Then, the full potential VAE(v)  is subjected to a 
cut-off in the core region: 
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I n  the second step, the constant c, in the ansatz 

Y 2 ( r )  = Y ' ( r )  t c r f 2 ( r / R C r )  (5) 

is chosen so that the nodeless radial eigenfunction wy(r) belonging to Yz(r) has 
the correct referencc cnergy e , .  Third, the constants yf and Sf are determined so 
that the pseudo-wavefunction wB(r) is normalized and identical to the all-electron 
solution for T > Rc,: 

w 3 r )  = 7 ,  ( w 3 r )  + s , r '+ ' f3(r /Rc , ) )  . (6) 

In  the HSC mcthod the functions f',f2,f3 are chosen to be identical. Vanderbilt 
(VAN) [ZO] noted that the freedom to choose different f' may be. exploited in such 
a way that the resulting pscudopokntials decay much faster in reciprocal space than 
thc l lsC potcntials. This improvcs the plane-wave convcrgcncc slightly, with no loss 
of transferahility. 

Shirley ef 01 (SAMJ) [24) introduced the concept of extended norm-conserving 
pscudopotcntials. Extended norm conservation means that the correctness of the 
radial logarithmic derivative is extended to higher order in energy: the envelope 
function f3(1^/R,,) (see equation (6)) is chosen such that a x / a E  and 8 Z x / 8 2 E  
(where z is the logarithmic derivative defined in (2)) match simultaneously at r = Ref. 
This leads to a marginal improvement of transferability, but to a somewhat slower 
decay of the pseudopotential in reciprocal space. 

Rappe el 01 (RRJK) [28] noted that a good convergence of the total-energy can be 
achieved when the higher Fourier components of the pseudo-wavefunction contain 
very little kinetic energy. This is in essence the Cohen-Heine criterion (I), but 
more specifically: according to this criterion, the. kinetic energy is minimized, but no 
control is exercised on the distribution of the kinetic energies. Optimal convergence 
of the plane-wave expansion is obtained when the kinetic energy contained in the 
high Fourier components of the pseudo-wavefunction is minimized directly. This 
is achicved by augmenting wps(r) for r < R,, by a function C,(r). C,(r) is 
chosen such that the logarithmic derivative of the optimized pseudo-wavefunction 
iTfp(r) = wfP(r)  + C,(r) and its energy derivative match the all-electron solution 
at 1' = R,, and that the kinetic energy beyond a momentum cut-off q, is minimized. 
I f  q, is the pseudo-wavefunction whose radial part is &pp(v), this requires minimizing 

- /d 'vv;(v)Av,(r)  - L9' d3rl q?vY(ti)pf(rl) . (7) 

The contribution to the kinetic energy by plane waves with q > q, is a direct measure 
of the level of convergence achieved for the total-energy. The RRKJ scheme allows 
one to construct pseudopotentials with very good convergence of the total-energy, the 
choice of the cut-offs qc and R,, effectively controls the rate of convergence, and the 
accuracy that can be achieved with a given pseudopotential. 

Trouiller and Martins (TM) [29] started from an analysis of the correlations be- 
tween the asymptotic form of the pseudopotential in q-space and the discontinuities 
in the  derivatives of the pscudo-wavefunctions at r = Rc,. They proposed to improve 
the smoothness of the pseudopotential by imposing (beyond norm conservation) (i) 
the continuity of the pseudo-wavefunction and its first four derivatives at r = R,,, and 
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(ii) zcro curvature of the screcncd pseudopotential at the origin. The TM pseudopo- 
tentials allow for largcr cut-off radii than the othcr pseudopotcntials, at comparable 
transferability. The larger cut-off, together with the zero curvature at the origin, 
greatly improves the plane-wave convergence of total-energy calculation. 

Very rcccntly Vandcrbilt [30] (VANZ) proposed a generalized norm-conservation 
criterion for non-local pseudopotentials of the Kleinman-Bylander [31] form. The 
idca is to transform wy into a wfP for each I independently, and to match the 
correct scattering properties a t  different energies spanning the band width of the 
target phase. The new pseudopotential has a formal resemblance to the Phillips- 
Klcinman pseudopotential. The main advantage of this pseudopotential is that it also 
allows for the succcssful pseudization of orbitals that cannot conveniently be pseudized 
by conventional techniques, e.g. 2p orbitals of the first row elements [30,32]. 

All these schemes lead to a common conclusion: by imposing additional conditions 
beyond norm-consewation, it is possible to improve plane-wave convergence without 
compromising transferability. Both the convergence and the transferability depend 
mainly on the cut-off radii. Note, however, that the cut-ol% are defined in different 
ways: KRKJ and TM match the wavefunctions at R,,, whereas in the HSC and VAN 
schcmes, R,, is the characteristic distance of a cut-off function varying steeply around 
/?,,, so that the wavefunctions match only at distances that are considerably larger 
(typically by fifty per cent) than Rcl. Quite generally, a larger cut-off radius leads 
to bcttcr plane-wave convergence. In the following we shall test the transferability, 
thc plane-wave convergence, and the convergence of the perturbation expansion in 
thc diffcrcnt pseudopotential schemes. We shall restrict our discussion to the (s,p)- 
hondcd elemcnts, sincc it cannot hc expected that pcrturhdtion theory works for d 
mctals, even aftcr optimization of the pseudopotentials 

3. Transferability 

The most straigthforward way to test the transferability of a pseudopotential is through 
the calculation of the phase-shifts and of the energies of excited one-electron levels 
of atomic systems. Figure 2 shows the 1 = 0 and 1 = 1 phase shifts at a distance of 
r=3.6 au for Al calculated using BHS and R W  pseudopotentials and different values 
for the cut-off radii. The reference configuration is 3s2 3p'. The RRKJ pseudopotential 
was optimized for a convergence of 1 m y d .  This means that for each cut-off Re, 
the parameter qcI was chosen such that the kinetic energy beyond this cut-off was 
lcss than I mRyd. The phase shifts of the VAN and TM pseudopotential depend in a 
vcry similar way on the cut-off. 

A standard value for the cut-off radius that guarantees that the pseudo- and all- 
clcctron wavefunctions are identical over the entire range of interest would be R,, = 
1.2 au in the VAN scheme. Howcver, we find that it is safe to increase R,, by more 
than fifty per cent without seriously affecting the phase-shifts in the range 3 0.5 Ryd 
around the atomic reference eigenvalues. 

The same conclusion may be drawn from the calculated cxcitation energies. ?a- 
hlc 1 lists the crrors in the pscudopotential predictions for the energy of the 4s state 
of AI, rclativc to an all-elcctron frozen-potential calculation. We find that the pseu- 
dopotcntial error incrcases with larger cut-ORs, but rcmains bclow 1 mRyd except for 
cxtrcmcly large cut-off radii. As we have already emphasizcd above, the numerical 
values of the cut-off radii are not directly comparable. What we want to compare 
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- 1  0 1 - 1  0 1 
E I R y )  E I R y I  

Flgum 2. Phase-shirts =,(E) (I=O,l)  Cor AI, calculated using the BHS and RRKl pseu- 
dopotentials and di8erent cut-off radii ( R d  = Rei). (a) EHS: dashed line Qt=1.2 au, 
daShed.dotled &,=1.6 au; (b) RRKI: dashed line &,=1.8 au, dasheddotted Rd=2.6 au. 
The full line shows the exact phase shifts from the allelectron calculations. The open 
cimles mark [he atomic reference energies 

are pseudopotentials which can be expected to have a similar rate of convergence in 
plane-wave convergence. A good measure of the rate of convergence is the kinetic 
energy E,,,(¶ > qc) contained in the high-momentum components of the valence- 
electron wavefunctions (cf equation (7)). If we set a tolerance level on the plane wave 
convergence by requiring ,Ebn( q > qc)  to be smaller than a certain value, this fixes 
a plane-wave cut-off energy E,, = q:. These cut-off energies are given in table 1. 
For all types of pseudopotentials, the cut-off energy necessary to achieve convergence 
within 1 mRyd decreases with increasing Rc,. With E,,, = 8 Ryd, convergence within 
this level is obtained with R,, = 1.6 au (HSC), R,, = 1.8 au (VAN), R,, = 2.6 au 
(RRKJ), and R,, = 2.8 au (TM). With these cut-off radii, the pseudopotential error in 
the excitation energy is 0.001 =I= O.OOO2 Ryd. 

In addition table 1 contains the total kinetic energy. All calculations performed 
hy us (see also section 4) show that the kinetic energy is indccd a very good indicator 
of the convergence of the pcrturbation expansion. 

This shows that for all pseudopotential schemes, there is a trade-off between 
transferability, plane-wave convergence, and convergence of the perturbation calcu- 
lation. All schemes proposed in the literature are essentially equivalent, at least for 
states with an angular momentum quantum number 1 that is also present in the core. 
I f  this is not the case (such as for Zp and 36 valence orbitals), the more sophisticated 
algorithms of RRKI and TM are to be preferred, because they control the kinetic 
cnergy in the high Fourier components more eficently than the simples schemes of 
BI IS and VAN. 

4. I’lnne-wave convergence 

The convergence criterion that we used in the last section is only a qualitative one, 
ultimately Convergence has to be checked in a total-energy calculation. An initial 
hint is given by the form of the pseudopotential in real space (figure 3) and in 
Fourier space (figure 4). Quite generally, an increase in the cut-off n d u  reduces 
the curvature of the pseudopotentials close to the origin and leads to a reduced 
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Tabk L Errors A E produced by various peudopotenlials for the one-electron oreiralion 
energy of lhe 4s electron, together with the kineiic energy Ekj0 of lhe s pseudo- 
wavefunaion and the cut-off energy E,, necessary IO achieve convergence of a plane- 
wave expansion of the s pseudo-wavetunclion within 1 mRyd (0.1 mRyd). Energies are 
given in Ryd. 

Vanderbill (VAN) 

1.2 O.owO9 13.3 (30.57) 
1.5 0.02033 10.3 (20.47) 
1.8 0.00102 8.0 (10.27) 

Rappe er ol (RRKI) 

1.8 0.00010 12.8 (43.5) 
2 3  O.wO29 9.8 (34.1) 
2.6 0.00079 8.3 (27.8) 
2.8 0.00140 6.6 (24.0) 
nuullier and Marlins (m) 

1.8 0.00010 22.8 (32.7) 
2.4 0.00026 17.7 (25.3) 
2 8  0.00087 8.7 (18.8) 

Hamann, Schliiter and Chiang (HX) 

1.2 0.02010 18.2 (30.6) 
1.4 0130029 10.6 (23.4) 
1.6 0.02077 7.9 (17.7) 
1.8 0.00163 6.3 (12.8) 

2.1 O.00MO 6.3 (8.35) 

3.4 0.00200 5.7 (120) 

0.377 
0.348 
0.325 
0.315 

0.375 
0.344 
0.323 
0.315 

0.370 
0.347 
0.327 
0.313 

0.371 
0.346 
0.325 
0.315 

non-locality. In Fourier space this is reflected by reduced Fourier components at 
intermediate (q s 2kF)  and at large momentum transfers. This reduction is strongest 
Tor q 3 212,. i.e. for momertum transfers close to the shortest reciprocal lattice 
vectors in a close-packed structure. Thus we can expcct that an increase in the 
cut-off radius improves the convergence of a perturbation calculation of the total- 
cncrgy. However, we want to improve simultaneously the convergence of the plane 
wave expansion and this is not immediately related to the damping of the high-q 
oscillations alone. We discuss plane-wave convergence first. Figure 5 shows the 
total-energy for face-centred cubic Al, calculated self-consistently for the VAN and TM 
pseudopotentials using different cut-off energies and cut-off radii. NI calculations are 
based on a (8 x 8 x 8) grid of special k-points 1331 in the first Brillouin zone. The 
pseudopotential was generated for an 3s3pz reference configuration and the exchange- 
correlation potential of Ceperley and Alder [34] was used. For both types of potentials 
an increase in the cut-off radius yields a marked improvement in the convergence of 
the calculated total-energy. For the VAN pseudopotential and Rc,=1.8 au, the total 
energy is converged to within 0.1 mRyd with a cut-off energy of E,,, = 10 Ryd. For 
a cut-off radius of R,,=1.2 au the same accuracy requires a much larger cut-off of at 
least 16 Ryd. 

The variation in the calculated bulk properties with the cut-off radius at fixed 
c u t 4  energy (which must be large enough to achieve reasonable convergence even 
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n 1 2 3 4 0 1 2 3 4 
R l a . u . 1  R 1 a . u .  I 

. , , , ,  ,,....,..,..,.,..i. , , , , '  - 

0 1 2 3 4 0 t 2 3 4 

Figure 3. The ionic pseudopotentials for A I  in r e d  space, generaled using four different 
pscudcpotential s&cmcs and different cul-off radii (R,o = R<,): (a) VAN: full line 
fl,,=1.2 au, dashed line R,,=I.8 au; (6) R R ~ :  full line R,1=1.8 au, dashed line 
R,,=2.6 au; (c) mf: full line R,t=1.8 au, dashed line R,(=2.8 au; (d) BHS: full line 
RC1=I.2 au. dashed line R,1=1.6 au. 

R 1 a . u .  1 R 1 a . u .  I 

Cor the smallest Rc,) is again a measure of the transferability. l'hble 2 summarizes 
the resulu for the binding energy, equilibrium atomic voIume and bulk modulus of 
AI, calculated self consistently using the VAN pseudopotential and different cut-off 
radii. In all calculations a cut-off energy of 16 Ryd and a grid of (8 x 8 x 8) special 
points has been used. A lowering of the cut-off to 8 Ryd influences essentially only 
the bulk modulus. We find that at least for R,, < 1.8 au the variation in the total- 
energy i s  < 0.5 per cent, even the variation of the bulk modulus (calculated by fitting 
Murnaghan's equation of state to the calculated energies) is 6 10%. An even more 
stringent test of the pseudopotentials is provided by the calculation of vibrational 
eigenfrequencies using the 'frozen-phonon approach', i.e. by taking the difference in 
total-energy between the ideal lattice and a distorted lattice with displacement pattern 
characteristic of the eigcnmodes at a high symetry k-point. The calculations have been 
performed with a plane-wave cut-off energy of 16 Ryd and 8 Ryd and a (12 x 12 x 12) 
mesh of special k-points. The phonon frequencies have been determined from the 
variation of the energy with the amplitude of the displacement and by using the 
forcc theorem 1371. Again we find that, on varying R,, between 1.2 au and 2.0 au 
the longitudinal frequency varies by only 2 per cent, in thc tranverse eigenmode the 
changc is about 3% (table 3). About the same order of uncertainty arises from the 
Brillouin-zone sampling. Duc to the very complicated Fermi surface of AI, a very 
linc k-mesh is required and with a (13 x 12 x 13) mesh the estimated error is of the 
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0 2 4 6 8 1 0  0 2 4 6 8 1 0  
q /kr  q /kr  

0 2 4 6 8 1 0  
q/kr  

Figure 4. The form faclor q 2 / ( 8 r Z ) ( k  + q [ w [ k )  of the ionic potential for Al, for 
bachmd- (upper parr) and forward-scatlering (louer pan), as calculated using the four 
different pseudopolenrial schemes: For definitions of the symbols see figure 3. 

30 30 

20 
>. a: x 
E 

a: - 10 E 
I 10 
W W 

a 0  4 0  

-10  - 1 0  

- 20 - 

5 1 0  1 5  5 1 0  15 
E,, [ RY 1 Ecu, [ RY 1 

Figure 5. The calculated total energy A E  of facecentred cubic aluminium calculated 
using the VAN and mu pseudopotentials and different cut-off radii Venus the c u t - ~ f f  
energy Sur of the plane wave basis set. The zero of energy for each culve is the total 
energy calculated for a cut-off energy of 16 Ryd. (a )  VAN: RGt = 1.2, 1.5, 1.8. 21 au; 
(b) TM: R,, = 1.8, 2.4, 28. 3.4 au. 

order of a few per cent in the eigenfrequencies. Thus again we conclude that it is 
safe to extend the cut-off radius to about 1.8 au since the slight loss in transferability 



Table 2 Binding energy EB, equilibrium atomic volume V., and bulk modulus 5 for 
FOC Al calculated using the Vandehill pseudopotential and differenl culilff radii The 
resulls were obtained from selfconsistent calculations and a cut.off of 8 Ryd (sc 8) 
and 16 Ryd (sc 16) and using wmnd- and lhird-order perlurbalion theory (2-PT, 3-PT). 
The experimental values and the results of the pseudopolenlial calculations of Lam and 
Coben [35] are given for comparison 

& 1.2 1.6 1.8 2.0 
1 ,  

X 8  
EB (Ry al.) -4.165 -4.174 -4.190 - 4 . m  
V. (au) 117.1 115.9 113.4 112.2 
B @Bar) 884 886 839 867 
sc 16 
EB (Ry al.) -4.167 
V. (au) 117.4 
B ( k b r )  775 
2-PT 
.& (Hy at.) 
Va (au) 
D p a r )  
3-PT 
E B  (Ry at.) -4.069 
V. (au) 137.8 
B@Rar) 406 

-4,178 -4.191 -4.2G9 
116.3 1145 112.2 
790 812 857 

-4.221 -4.2M) -4.208 
91.9 103.5 108.9 

1040 7% 641 

-4.175 -4.188 -4.204 
111.9 112.6 112.5 
646 636 629 

Experiment Lam and Cohen 
, "  

V. (au) 109.6 108.7 
B (kBar) 722 715 

is outweighed by the improved convergence properties. 

5. Convergence ot  the perturbation series 

Wc now turn to the investigation of the convergence of the perturbation series. The 
gcneral form of the RayleighSchriidinger expansion of the electronic ground-state 
cnergy is given by [38] 

E = Eo f E ,  f E? + E3 +. . . (8)  

with 

1;' - 1' 
1. - r(Vql,. . . , Q )  w ( q l ) . .  .w(P,) s(ql).. . s(qk). 

91 *...I q* 

Here S(q )  is the geometric structure factor describing the spatial arrangement of the 
ions. For simplicity eq. (8) has been formulated for a local pseudopotential. Explicit 
expressions for the first- and second-order terms for non-local pseudopotentials are 
given in [9] and [lo], the thud-order contribution for non-local potentials has been 
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Tnbk 3. Phonon Irequcncies U (in rad sec-') for face-aentred cubic Al at q = 
(100)(2r/a), calculared using the 'frozen-phonon' approach with a variable plane-wave 
cul-off of 8 and i 6  Ryd (a, sc16) and second- and third-order perfurtalion theoly 
(Z-FT, 3-FT). The Vanderbilt pseudopotential with a variable cut-off & has been used. 
?he experimental values are given for comparison (measured at 80 K by Stedman and 
Nilsson [36]). 

%, (au) 1.2 1.6 1.8 20 Experiment 

sc8 
WT 
WL 
sc 16 
WT 
WL 

2-FT 

wT 
WL 

3-FT 

WL 

3.252 3.220 3.272 
6.488 6.331 6.277 

3.290 3.288 3.308 
6332 6.286 6.238 

4.075 3.811 3.839 
6.962 6342 6.238 

4.521 3.791 3.770 
6.823 6.281 6.201 

3.3614 3.65 
6.250 6.08 

3.384 
6.222 

3.178 
6.116 

3.757 
6.175 

discussed by McLaren [39]. The 'multi ole functions' I'("(ql,. . . , q k )  are general 
characteristics of the electron gas. r('?(q,-q) may bc  expressed in terms of the 
susceptility x ( q )  of the electron gas in the random-phase approximation and the 
local-field corrections G(q) accounting for the exchange and correlation interactions 
between the electrons [9,10]. Explicit expressions for higher order multipole functions 
are given in I40-421. 

Various approximations have been proposed for the local-field corrections. Using 
local density functional theory, one obtains G(q) = 7 ( q / k F ) 2  with the coefficient 
y determined by the compressibility sum rule for the electron gas [43,44]. It has 
bccn shown that the LDA local-field corrections lead to realistic predictions, and we 
decided to use this form for G(q) with 7 calculated according to the Ceperley-Alder 
parametrization of the exchangecorrelation functional used in the calculation of the 
ionic pseudopotential. However, further sum rules relate G(q) to the correlation 
energy, the electron4ectron pair correlation function etc. The Ichimaru-Utsumi 
('U) local field is consistent with the Ceperley-Alder exchange and correlation (at 
least in the limit q - 0 )  and satisfies all relevant sum rules. 

While the second-order terms can be calculated for the full non-local form of the 
pseudopotential, the third-order terms can be computed only in a local approximation. 
It was shown 1461 that the so-called 'on-Fermi-sphere' approximation (Ikl = k ,  and 
Ik+ql = k ,  for q .$ Zk, and -q l [ (q+k)  for q > 2k, ) for the pseudopotential form 
factor leads to an overestimate of the third-order contribution. Following Bertoni e6 a1 
14,471 we constructed a local pseudopotential form factor by averaging (klwlk + q) ,  
wcighted with the f ree  electron energy denominator ( k 2 - l k + q I 2 ) - ' ,  over all possible 
dircctions of k for a given value of q. This 'semi-local' form factor has been used 
in  calculations of the third-ordcr contributions to thc total-energy and to phonon 
Crcquencies. Explicit expressions for the third-order contribution to the dynamical 
matrix are given in Kagan and Brovman [4S]. 

The perturbation results for the static properties of AI, calculated with the VAN 
pseudopotential and different cut-off radii are listed in table 2 For small cut-off 
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radii, perturbation theory gives very bad results, espccially for the equilibrium vol- 
umc. An increase in the cut-off radius substantially improves the convergence of the 
perturbation series, together with the plane-wave convergence. For Rcl 1.8-2.0 
the perturbation theory is rather well converged even at second order, with small 
third-order corrections. The same conclusion may he drawn from calculations of 
the phonon frequencies (table 3): on increasing the cut-off radius, the higher-order 
( 9 1  3 3) perturbation contributions to the eigenfrequences are quickly reduced and 
the results are in reasonable agreement with the ‘frozen-phonon’ valucs. perturbation 
theory allows one to calculatc phonon frequencies over the entire Brillouin zone. 
An example is shown in figure 6. We see that with a suitable choice of the cut-off 
radius, the third-order contributions are rather small, except for transverse phonons 
in the [loo] and [ill] directions. The possibilty of performing ‘frozen-phonon’ and 
perturbation calculations with the same pseudopotential allows us for the first time, 
to assess the accuracy of the predictions of lattice dynamical properties using pertur- 
hation theory. This point will bc elaborated in more detail in another paper [49]. 

Figure 6. Phonon-dispersion relations for face-cenlred cubic Ai in loi3 rad scc-l, 
calculaled using the VAN pseudoplorential with a cut-~ff radius of Qt=1.8 au and the 
uu local held Corrections. Broken lines second-order, Iull lines third-xder perlurbation 
Iheoly. The open squares represent the ’frozen-phonon’ frequencies from a selfconsistent 
1otal.energy calculation. The circles and triangler ma& the exp‘imental resulls of 
Stedman and Nilsson I%]. 

The phonon frequencies depend slightly on the local field corrections. Using the 
IU form instead of the LDA local field correction changes the phonon frequencies by 
about 2 per cent. 

6. Interatomic forces 

To second-order in thc pseudopotential, the total-cnergy may be written as the sum 
o l  a volume energy (representing the electron gas terms plus the self-energy of the 
pscudoatom) and a pair-interaction term I9,lOI. Highcr-ordcr terms of order n 
contribute an la-body tcrm and corrections to the volume and all m-body interactions 
with < 7 1 .  The characteristic form of the density-dependent pair potentials is 
determined by a screened short-range repulsion and long-range Friedcl-oscillations 
arising from the rapid variation of the Fermi occupation function around E,,. The 
amplitude of the Friedel oscillations is set by the on-Fermi-sphere matrix element of 
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arising from the rapid variation of the Fermi occupation function around EF. The 
amplitude of the Friedel oscillations is set by the on-Fermi-sphere matrix element of 
the pseudopotential [50,51]. It has been shown that the variation of the effective 
pair potential with electron density and pseudopotential explains the trends in the 
crystalline [50] and liquid 152-551 structures of the elements. 

L -2  - 
U -4 

Figure 7. Effmive pair potential O( R)  tor AI, 
calculated using the Vanderbilt pseudopotential 

0 2 4 6 8 1 0  and the LDA local-field mrrection. Broken curve 
R,=l.2 au. full curve Rd=l.8 au. 

m 

R ( i l  

As the Q = ZkF matrix element of the pseudopotential depends strongly on the 
cut-off radius, we expect a strong variation of the pair potential O ( R )  with Rcl.  
This is demonstrated for the VAN pseudopotential in figure 7 the cut-off radius 
influences the amplitude, but not the phase of the oscillations. The influence is 
strongest around the nearest-neighbour distance. The most direct way to analyse the 
accuracy of the pair potential is via a molecular dynamics simulation of the liquid 
structure. The pseudopotential with the smallest cut-off radius (and hence the largest 
matrix element at q = ?kF) produces the deepest local minimum around the nearest- 
neighbour distance in @( R), see figures 7 and 2 It leads to a glassy rather than 
a liquid structure for temperatures close to the melting point (after cooling from 
higher temperatures). A pseudopotential with a larger cut-off (and hence optimal 
convergence of the perturbation series) leads to an almost perfect agreement of the 
calculated static structure factor with experiment (figure 8). This shows that the 
optimization of the perturbation series is also very effective in folding down higher- 
order contributions to the pair forces. 

L - 
m 
a 

4 

3 

2 

1 

0 
0 2 4 6 8 10 

Figure 8. Pair correlation function g( R )  for 
liquid AI at 953 K, calculated using molecular 
dynamics and the pair potentials shown in fig 
ure 7. The crosses show the experimental values 

R ( A )  for g( R) (after Waseda [53$ 
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* n "  t I 

80 100 120 
volume 0 l a . " .  > 

Figum 9. mtal energy (upper panel) and pressure 
(lower panel) of Ge in lhe diamond (D), @tin (E), 
facecentred cubic (CO, simple cubic (a) and hexag- 

I " "  F...I,,.,1,,,.1.,,,1.11111111111111111.1 
onal close-packed (a) S ~ N C ~ U ~ E S ,  as a function of 

140 160 wlume calculated with the VAN pseudopotential (cf 
rex11 

The proper decomposition of the total-energy into volume, pair and many-body 
contributions is very important for underjtanding the physical mechanism responsible 
for stabilizing the open structures of the metallic, semi-metallic and semiconducting 
B-group elements. Recent work based on OPW and empirical pseudopotentials 155- 
591 has shown that the interplay of the volume and pair forces alone explains the 
trend form high to low coordination numbers with increasing electron density, al- 
though pair forces alone are not suflicent to stabilize the low-coordinated crystalline 
structures. In the liquid phase, on the other hand, volume and pair forces alone yield 
an accurate description of the pair correlation functions of the molten elements from 
groups 111 to VI [55-591. Significant differences between the pair-potential approach 
and full many-body calculations within a local-density molecular dynamics framework 
[2,60,61] appear only at the level of four-atom correlations. Here we want to ver- 
ify that a calculation on the basis of optimized 'soft-core' pseudopotentials leads to 
the same conclusion. The example chosen is Ge. Good convergence properties are 
achieved by using the largest cut-off radii R,, compatible with a correct form of the 
pseudo-orbitals in the bonding region. For a B-group element like Ge we have to 
consider the different spatial variation of the highest core orbitals: the 4s and 4p 
wavefunctions are more localized than the 3d wavefunction, and this influences the 
form of the s, p and d components of the valence pseudo-orbitals. We find that 
the s and p cut-off radii are restricted to Ra,ep < 1.3 au, whereas for the d-cut-off 
radius a large value R,, % 1.8 au is allowed. Figure 9 shows the total-energy and 
pressure of Ge in the diamond, p-tin, face-centred cubic, simple cubic and hexag- 
onal close-packed structures, as a function of volume calculated with a Vanderbilt 
pseudopotential and R, = R,,= 1.2, R,= 1.8 au. The calculated structural energy 
differences and the transition pressure for diamond to p-tin are in good agreement 
with the results of Chang and Cohen [62]. Figure 10 shows the pair interaction in liq- 
uid Ge just above melting point, calculated using the same pseudopotential, figure 11 
the molecular dynamics results for the pair-correlation function in the melt. Although 
the pair-correlation function is in good agreement with experiment, it is interesting 
to explore the influence of many-body forces. A calculation of the explicit real-space 
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form of the three-body interactions via a six-dimensional Fourier transform of the 
third order perturbation characteristic in b-space (see [lo], section 2.2 for details) is 
impracticable. However, it is possible, at least for small ensembles, to calculate the 
third-order contributions to the pair and triplet forces in a k-space formalism and to 
use these forces in a molecular dynamics simulation [a]. The dashed line in figure 11 
shows the influence of the third-order contributions. We find that as expected, third- 
order contributions are small for a potential with optimized convergence properties. 
Note, however, that because of the use of the electron-gas response function, the 
three-body forces used in these calculations are correct only for the metallic liquid 
phase, and not for the semiconducting crystalline phase. 

0 2 4 6 8 1 0 Figure 10. Effective pair potential O( R) for Ge, 
calculated using the Vanderbilr pseudopotential. R l A 1  

- 3.0 
(r I 

m - 1 . 5  
0 Figure 11. Pair correlation function g( R) for 

liquid Ge at 1250 K, calculated using a pair- L 1 . 0  
0 potential simulation lor a N = 1000 atom en- 

. 5  semble (full line), and a simulation fora N=128 - atom ensemble using in addition three body 
0 .  forces (broken line). The crosses represent lhe 

0 2 4 6 8 10 experimental data by Waseda [53], open circles 
data by Bellisent-Funel and Bellisent 1541. 

L 

U 

L 

R 

I. Conclusion 

Our aim was to construct norm-conscrving 'soft-core' pseudopotentials with improved 
convergence properties of the plane-wavc and perturbation expansions. The results 
presented in sections 3 to 6 show that this goal can be achieved, within the various 
extended norm-conserving pseudopotential schemes, by increasing the pseudopoten- 
tial cut-off radii. There is always a certain trade-off between improved convergence 
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and a certain loss in transferability, but as long as for each angular momentum com- 
ponent the position of the maximum in the wave function is reproduced correctly, the 
pseudizing error is limited. Most of the results presented here refer to the Vanderbilt 
[20] pseudopotential, but we have shown that equivalent results may be obtained 
using the pseudopotential schemes of Rappe et ul [%I, 'bullier and Martins [29] 
etc. The unifying feature is the kinetic energy of the valence pseudo-orbitals. As 
pointed out by Rappe el ul [28], the kinetic energy contained in the Fourier compo- 
nents beyond a certain cut-off energy E,,, represents a reliable estimate of the total 
energy convergence. The total kinetic energy controls the convergence of the pertur- 
bation approach. Pseudopotentials having the same transferability will have similar 
expectation values for the kinetic energy and therefore nearly the same form of the 
screened pseudopotential matrix elements and effective pair interaction (figure 12). 
The potentials used are also very similar to those derived from optimized OPW pseu- 
dopotentials. The OPW pseudopotentials differ only in the large q-oscillations which 
cause their poor plane-wave convergence properties. 

5, 

0 2 4 6 8 1 0  0 2 4 6 8 1 0  
q/kr  R th i  

Fl~um 12. Screened pseudopotential form factor (left), and effective pair interaction 
(right) for AI, calculated using various pseudopotential schemes. Full curve vhv: R,,= 
1.8 au, broken curve TM : R,, = 2.8 au and RRU: R., = 2.6 au, dotted c u m  BHS: & = 
1.6 au, dotdashed curve opw-pseudopotential 1581. The TM, RRLl and BHS pseudopoten- 
tials are indistinguishable on the scale of the plot lor the pair interaction. 

With the optimized norm-conserving pseudopotential, we can now perform rapidly 
convergent total-energy calculations for the crystalline phases of a material and use 
pseudopotential perturbation theory to construct interatomic forces for the simulation 
of the liquid and amorphous phases, all using one and the same pseudopotential. This 
should allow us to make improved predictions for solid-liquid phase diagrams and to 
develop more efficient algorithms for ab inilio molecular dynamics simulations. 
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